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COMMENT 

A note on the perturbation expansion in the 
percolation problem 

E BrCzint and A J McKaneS 
t Service de Physique Thtorique, C E N  Saclay, F-91190 Cif-sur-Yvette, France 
$ Department of Theoretical Physics, University of Manchester, Manchester M13 9PL, U K  

Received 5 June 1986 

Abstract. A new field theory representation for the percolation problem is derived by 
explicitly taking the n = 0 limit in the usual ( n  + 1)-state Potts model formulation. This 
representation is used to investigate the validity of an analytic continuation recently 
introduced to determine the large-order behaviour of the perturbation expansion in this 
problem. 

Recently one of us (McKane 1986) carried out a study of the large-order behaviour 
of the perturbation expansion in the field theoretic version of the percolation problem, 
which can be formulated as the n = 0 limit of the ( n  + 1)-state Potts model. 

In the course of the calculation of the large-order behaviour, a prescription for 
analytically continuing from the positive integers was used in order to allow the n = 0 
limit to be taken. The procedure was illustrated in detail for the zero-dimensional field 
theory where it was shown that, as a consequence of the continuation, the form of the 
Kth-order term in the perturbation expansion for large K was unlike that found in 
previous studies (where the number of field components has been a positive integer). 
The purpose of this comment is to show how this result can be obtained by a more 
direct evaluation. Delicate questions concerning the analytic continuation are now 
avoided, but the fact that the structure of the previous result is recovered is an indication 
of the validity of the original procedure. 

Our starting point is the ( n  + 1)-state Potts model expressed as a field theory 

where the summation convention is assumed, i = 1,2, .  . . , n, 

a = l  

and where {et, e:, . . . , el+'} is a set of ( n  + 1) n-component vectors that satisfy 
n + l  n + l  f: eye? = ( n  + 1 ) s " ~  - 1 1 e9ep=(n+ l ) s i j  ep=O. 

i = l  a = l  a = l  

We now introduce ( n  + 1) new fields +a :  
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(3) 

(4) 
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constrained by 
n + l  2 * “ = O .  
o = l  

The Jacobian is equal to ( n  + 1)”’ for each point in the d-dimensional space. The 
delta-function constraint resulting from (5) can be eliminated by the introduction of 
a new field, h. This leads to the following representation for Z,,(g): 

where 

%,,(g, h )  = I d+bx exp( -1 ddx[f (V+b)’+fr+b2+(n+ l)3’z(g/3)~3-ih+b]). (7) 

The dependence on n is now explicit and the n = 0 limit can be taken directly: 

1 
l im-[Zn(g)- l ]= %:,ln%o+constant. 
n - 0  n 

We now wish to compute the imaginary part of the zero-dimensional version of 
(8), generated when the coupling constant g is pure imaginary, in order to compare 
with the result obtained by McKane (1986). The zero-dimensional version of (1) is 

where for convenience the +i are scaled so that r = 1. This integral exists and is real 
for g pure imaginary and for definiteness we set g = i(g(. Then (8) can be written, 
dropping the subscript 0, as 

1 
lim -[Zn(g) - 11 = h, g) In %( h, g )  + f 
n-0 n 

where 

The function in (1 1) is bounded and real. To evaluate it in terms of known special 
functions we shift 4 by i/21g( to obtain (Abramowitz and Stegun 1965) 

(12) 
where H = h - 1/41gl and Ai is the Airy function. For H < 0 Ai is positive and decays 
fast enough so that the integral in (10) exists. For H > 0, Ai is oscillatory and where 
% < 0 an imaginary part is generated in (10). Thus 

%(h,  g)  = e~p(-1/241g1~) e~p(-H/21g1)(2.rr)lg(-”~Ai(-Hlgl-”~) 

where 
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We wish to evaluate (13) for small Igl in order to calculate the Kth-order term in 
the perturbation expansion for large K .  To do this, break up the region of integration 
into the regions (0, al ) ,  ( a , ,  a*) ,  . . . where the a are the zeros of the Airy function. 
Integration by parts then gives 

up to exponentially smaller terms. This should be compared with (3.9) of McKane 
(1986): 

As discussed in § 5 of that paper the subdominant term in the exponent and the 
prefactor in (16) are expected to be modified by higher-order contributions coming 
from nearly massless modes. The extent of the modification, in this zero-dimensional 
case at least, can be seen using the present approach. Before discussing this in more 
detail let us also note that the overall sign depends on whether arg g = 7r/2 or -7r/2, 
a detail which we have not concerned ourselves with here. 

The previously derived result (16) can be obtained from (15) by using the asymptotic 
forms of Ai(-x) and Ai’(-x) for large x (Abramowitz and Stegun 1965). The function 
Ai(-x) has zeros when 

and therefore the first zero ( x  = a , )  occurs at x3 / ’==9~/8 ,  i.e. a ,  = (9.rr/8)’I3. To the 
same order Aif(-al) = ( 2 ~ ) - ” * ( 9 ~ ) ” ~  and (16) is recovered. Presumably the higher- 
order contributions coming from the nearly massless modes generate the asymptotic 
expressions for a,  and A i f ( - a l ) .  Actually as far as using the results for numerical 
work goes, it makes little difference since 

(97r/S)’” = 2.320. . . a,  = 2.338 . . . 
(18) 

(2~) -” ’ (97 r )”~  - - 0.696 . . . Ai’(-al) = 0.699 . . . . 
Thus the leading order results for a,  and Ai’( - a , )  are good to better than 1 O h .  

In summary, the effect of the analytic continuation and the nearly massless modes 
has been clarified by beginning from the representation (10). It would be interesting 
to extend these considerations to the field theory in d = 6 - E dimensions and compare 
the results with McKane (1986) and also to calculate the coefficient of gK in (10) 
numerically, as a further check on our method. 
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